Interval timing in mice does not rely upon the circadian pacemaker.

نویسندگان

  • P A Lewis
  • R C Miall
  • S Daan
  • A Kacelnik
چکیده

The suprachiasmatic nucleus (SCN) of the hypothalamus is a precise timekeeper that controls and synchronizes the circadian period of countless physiological and behavioural functions and entrains them to the 24 h light/dark cycle. We examined the possibility that it is also indirectly involved in measurement of a briefer interval by observing the effects of lesions targeted at the SCN, and abolishing circadian rhythmicity, upon interval timing behaviour. Fourteen house mice (Mus musculus) were trained to estimate a 10 s interval using a modified peak procedure, and then underwent electrolytic lesions. Six individuals became behaviourally arrhythmic. Peak interval performance was then assessed in 12:12 light/dark conditions and in constant darkness. No significant change in peak characteristics was observed as a consequence of the lesion for either rhythmic or arrhythmic groups. These results show that the accurate measurement of 10 s requires neither a functioning circadian pacemaker nor entrained behavioural rhythmicity.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Interval timing does not rely upon the circadian pacemaker in mice

The suprachiasmatic nucleus (SCN) of the hypothalamus is a precise timekeeper that controls and synchronizes the circadian period of countless physiological and behavioural functions and entrains them to the 24 h light/dark cycle. We examined the possibility that it is also indirectly involved in measurement of a briefer interval by observing the effects of lesions targeted at the SCN, and abol...

متن کامل

Stopping time: the genetics of fly and mouse circadian clocks.

Forward genetic analyses in flies and mice have uncovered conserved transcriptional feedback loops at the heart of circadian pacemakers. Conserved mechanisms of posttranslational regulation, most notably phosphorylation, appear to be important for timing feedback. Transcript analyses have indicated that circadian clocks are not restricted to neurons but are found in several tissues. Comparisons...

متن کامل

Intact interval timing in circadian CLOCK mutants.

While progress has been made in determining the molecular basis for the circadian clock, the mechanism by which mammalian brains time intervals measured in seconds to minutes remains a mystery. An obvious question is whether the interval-timing mechanism shares molecular machinery with the circadian timing mechanism. In the current study, we trained circadian CLOCK +/- and -/- mutant male mice ...

متن کامل

Modeling circadian and sleep-homeostatic effects on short-term interval timing

Short-term interval timing i.e., perception and action relating to durations in the seconds range, has been suggested to display time-of-day as well as wake dependent fluctuations due to circadian and sleep-homeostatic changes to the rate at which an underlying pacemaker emits pulses; pertinent human data being relatively sparse and lacking in consistency however, the phenomenon remains elusive...

متن کامل

Circadian Clocks for All Meal-Times: Anticipation of 2 Daily Meals in Rats

Anticipation of a daily meal in rats has been conceptualized as a rest-activity rhythm driven by a food-entrained circadian oscillator separate from the pacemaker generating light-dark (LD) entrained rhythms. Rats can also anticipate two daily mealtimes, but whether this involves independently entrained oscillators, one 'continuously consulted' clock, cue-dependent non-circadian interval timing...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Neuroscience letters

دوره 348 3  شماره 

صفحات  -

تاریخ انتشار 2003